Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury.

نویسندگان

  • Suelen Adriani Marques
  • Fernanda Martins Almeida
  • Aline Marie Fernandes
  • Cleide dos Santos Souza
  • Daniel Veloso Cadilhe
  • Stevens Kastrup Rehen
  • Ana Maria Blanco Martinez
چکیده

We tested the effects of mouse embryonic stem cells (mES) grafts in mice spinal cord injury (SCI). Young adult female C57/Bl6 mice were subjected to laminectomy at T9 and 1-minute compression of the spinal cord with a vascular clip. Four groups were analyzed: laminectomy (Sham), injured (SCI), vehicle (DMEM), and mES-treated (EST). mES pre-differentiated with retinoic acid were injected (8 x 10(5) cells/2 microl) into the lesion epicenter, 10 min after SCI. Basso mouse scale (BMS) and Global mobility test (GMT) were assessed weekly up to 8 weeks, when morphological analyses were performed. GMT analysis showed that EST animals moved faster (10.73+/-0.9076, +/-SEM) than SCI (5.581+/-0.2905) and DMEM (5.705+/-0.2848), but slower than Sham animals (15.80+/-0.3887, p<0.001). By BMS, EST animals reached the final phase of locomotor recovery (3.872+/-0.7112, p<0.01), while animals of the SCI and DMEM groups improved to an intermediate phase (2.037+/-0.3994 and 2.111+/-0.3889, respectively). White matter area and number of myelinated nerve fibers were greater in EST (46.80+/-1.24 and 279.4+/-16.33, respectively) than the SCI group (39.97+/-0.925 and 81.39+/-8.078, p<0.05, respectively). EST group also presented better G-ratio values when compared with SCI group (p<0.001). Immunohistochemical revealed the differentiation of transplanted cells into astrocytes, oligodendrocytes, and Schwann cells, indicating an integration of transplanted cells with host tissue. Ultrastructural analysis showed, in the EST group, better tissue preservation and more remyelination by oligodendrocytes and Schwann cells than the other groups. Our results indicate that acute transplantation of predifferentiated mES into the injured spinal cord increased the spared white matter and number of nerve fibers, improving locomotor function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Functional effect of mouse embryonic stem cell implantation after spinal cord injury

We transplanted mouse embryonic stem cells (mESCs) to improve functional loss in a rat model of clip-compression spinal cord injury (SCI). The mouse embryonic stem cells were transplanted to injured cord 7 days after injury. We include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells an...

متن کامل

Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection

Human embryonic stem cells (hESC) hold great promise for the treatment of patients with many neurodegenerative diseases particularly those arising from cell loss or neural dysfunction including spinal cord injury. This study evaluates the therapeutic effects of transplanted hESC-derived oligodendrocyte progenitors (OPC) and/or motoneuron progenitors (MP) on axonal remyelination and functional r...

متن کامل

Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice.

Embryonic stem (ES) cells have been investigated in repair of the CNS following neuronal injury and disease; however, the efficacy of these cells in treatment of postinjury pain is far from clear. In this study, we evaluated the therapeutic potential of predifferentiated mouse ES cells to restore sensory deficits following spinal cord injury (SCI) in mice. The pain model used unilateral intrasp...

متن کامل

Comparison of human adipose-derived stem cells and chondroitinase ABC transplantation on locomotor recovery in the contusion model of spinal cord injury in rats

Objective(s):Spinal cord injury (SCI) is one of the most serious clinical diseases and its treatment has been a subject of interest to researchers. There are two important therapeutic strategies in the treatment of SCI: replacing lost tissue cells through cells implantation and scar elimination. Therefore, in this study we used human adipose-derived stem cells (hADSCs) implantation and injectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1349  شماره 

صفحات  -

تاریخ انتشار 2010